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Non-Euclidean	Manifolds	in	Computer	Vision

Why	should	we	care?	Because,	we	cannot	ignore	the	real	
geometry	of	the	mathematical	spaces.

An	N-dimensional	manifold	M	is	a	topological	space	where	every	
point	is	endowed	with	“local”	Euclidean	structure

What is the distance between Paris and San Francisco?



Optimization	on	Non-Linear	Manifolds

Matrix	Lie	Group:	Set	of	n	x	n non-singular	matrices	with	a	smooth	
manifold	structure

Stiefel	Manifold:	Set	of	orthonormal	matrices	of	size	n	x	p

Grassmann	Manifold:	Set	of	p-dimensional	linear	subspaces	in	n-
dimensions

A truck rendered at different orientations on SO(2) – Rotation Matrices



Subspace	Analysis	on	Grassmann	Manifolds

Videos can be treated as 
image sets

Each set modeled as a 
linear subspace

Analysis on the Grassmann 
manifold

Gradient descent based optimization requires understanding of the characteristics of 
loss functions on non-Euclidean manifolds



A	Statistical	Approach

SAMPLE 

Improved	Sample	Designs	Can	Enable	a	Better

Understanding	of	the	Optimization	Surface

ANALYZE



Existing	Techniques	Provides	Poor	Coverage	

Projecting random samples created in the Euclidean space results in poor 
coverage of the manifold



In	its	most	generic	form	the	inference	problem	can	be	described	as	
recovering	or	analyzing	a	multi-variate,	smooth	function

defined	on	some	manifold			 .

A	good	sampling	pattern	is	expected	to	have	two	main	properties
1. the	sampling	should	be	random
2. the	samples	should	uniformly	cover	all	the	manifold

Characteristics	of	a	Good	Sampling	Pattern



Sampling	Euclidean	Spaces:
Poisson	Disk	Sampling

Generating	Poisson	Disk	Samples
• Each	sample	is	placed	with	uniform	probability	
• No	two	samples	are	closer	than	a	pre-specified	radius
• A	PDS	is	maximal	when	no	more	points	can	be	inserted
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Linear	subspaces	of	dimension	k in	n-dimensional	Euclidean	spaces	
are	points	on	the	Grassmannian Gr(n,k)

Measures	the	smallest	rotation	that	takes	from	one	subspace	to	
another	

Chordal	distance:

Grassmann	Manifolds



Dart	throwing	for	Poisson	Disk	Sampling



Proposed	Scheme	Provides	Better	Coverage	

Our	proposed	approach	produces	better	uniform	samples,	thereby	
leading	to	improved	analysis	and	optimization



Visualizing	the	sample	distributions	(MDS)

50 samples from 𝐺"#

50 samples from 𝐺$%



Subspace	Learning	as	Graph	Embedding

Solution	of	PCA/LDA	is	approximated	as	a	linear	combination	of	the	
Dart	throwing	samples	Si

Consensus	based	approach

Subspace	Optimization	using	Grassmann
Samples



PDS	Samples	 are	Very	Effective	in	Preserving	the	
Desired	Relationships

Principal	Component	Analysis	cost	optimization	using	consensus	on	
the	Grassmannian (higher	is	better)

Ecoli dataset	(7	dimensions)	

Ecoli Dataset (7 dimensional)



PDS	Samples	 are	Very	Effective	in	Preserving	the	
Desired	Relationships

Principal	Component	Analysis	cost	optimization	using	consensus	on	
the	Grassmannian (higher	is	better)

Ecoli dataset	(7	dimensions)	

PCA

Proposed

Ecoli Dataset (7 dimensional)



PDS	Samples	 are	Very	Effective	in	Preserving	the	
Desired	Relationships

Comparison	of	the	consensus	embedding	obtained	using	the	LDA	
cost	on	the	Grassmannian,	to	the	true	solution	obtained	using	
generalized	eigenvalue	decomposition

Ecoli Dataset (7 dimensional)
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LDA

Proposed



Diverse	Solutions
Grassmann distance	between	the	optimal	solution	and	the	linear	subspace	
inferred	using	the	consensus	from	PDS	samples	for	the	Ecoli dataset.



Sample	design	can	be	directly	viewed	from	a	function	
reconstruction perspective	– Fourier	Domain	Analysis

Why	Does	PDS	Work?

2-D Fourier PSD 1-D PSD

Fourier Transform Radial Averaging



In	statistical	mechanics,	Pair	Correlation	Function	describes	how	
density	varies	as	a	function	of	distance	from	a	reference

Characterizing	Spatial	Statistics



Key	Idea	for	Spectral	Sampling

1-D	PSD	and	PCF	are	connected	via	the	1-D	Hankel	
transform

Zero 
region



Summary
Poisson	disk	sampling	for	better	coverage	of	Grassmann

Effective	approximation	of	the	optimal	solution	for	subspace	learning	
problems

High-quality	samples	can	serve	as	anchor	points	to	search	through	the	
Grassmannian using	conventional	optimization	strategies
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